25 research outputs found

    A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.publishedVersio

    Cloud Application Security Based on Enhanced MD5 Algorithm

    No full text

    EACH-COA: An Energy-Aware Cluster Head Selection for the Internet of Things Using the Coati Optimization Algorithm

    No full text
    In recent years, the Internet of Things (IoT) has transformed human life by improving quality of life and revolutionizing all business sectors. The sensor nodes in IoT are interconnected to ensure data transfer to the sink node over the network. Owing to limited battery power, the energy in the nodes is conserved with the help of the clustering technique in IoT. Cluster head (CH) selection is essential for extending network lifetime and throughput in clustering. In recent years, many existing optimization algorithms have been adapted to select the optimal CH to improve energy usage in network nodes. Hence, improper CH selection approaches require more extended convergence and drain sensor batteries quickly. To solve this problem, this paper proposed a coati optimization algorithm (EACH-COA) to improve network longevity and throughput by evaluating the fitness function over the residual energy (RER) and distance constraints. The proposed EACH-COA simulation was conducted in MATLAB 2019a. The potency of the EACH-COA approach was compared with those of the energy-efficient rabbit optimization algorithm (EECHS-ARO), improved sparrow optimization technique (EECHS-ISSADE), and hybrid sea lion algorithm (PDU-SLno). The proposed EACH-COA improved the network lifetime by 8–15% and throughput by 5–10%

    Prediction Models for Ozone Gas Estimation

    No full text
    corecore